В последнее время всё больше и больше внимания уделяется фильтрации излучаемых передающими устройствами сигналов. Излучение на частотах, отличающихся от рабочей, можно оценить (по аналогии с дорожным движением), как выезд на «встречку» из-за негабаритности транспортного средства.
С одной стороны, как радиолюбители, так и профессионалы применяют на выходе передатчиков фильтры нижних частот (ФНЧ) с целью подавления только гармонических составляющих. С другой стороны, в погоне за уменьшением габаритов, а значит, и экономией конструктивных материалов производители передающей аппаратуры создают всё новые и новые «шедевры»-трансиверы, которые или имеют самые простые фильтры на выходе передатчиков, или не имеют их вовсе. В последнем случае расчёт делается на подключение внешних фильтрующее согласующих устройств — различного рода тюнеров, которые или выпускаются отдельно опционально, или не выпускаются для конкретного трансивера вовсе.
При желании увеличить мощность выходного сигнала передатчика радиолюбитель изготавливает или приобретает усилитель мощности, который имеет в своём составе только ФНЧ (например, в виде выходного П-контура). Такой фильтр в известной степени подавляет гармоники основного сигнала, а сам усилитель усиливает весь спектр сигнала, который поступает на него с трансивера. Следовательно, подавление гармонических составляющих, которые обусловлены нелинейностью каскадов как в трансивере, так и в усилителе мощности, уменьшается. Другие составляющие, частоты которых находятся ниже частоты среза ФНЧ усилителя мощности, поступая на него, усиливаются и проходят в антенну. Резонансная, хорошо согласованная на рабочей частоте антенна частично подавляет нежелательные спектральные составляющие, которые становятся, однако, причиной помех в ближней зоне.
В настоящее время, кроме «пролезающих» на выход трансивера наводок гетеродинов и их гармоник, в составе выходного сигнала трансивера имеются также и «цифровые» флуктуации от различного рода цифровых «примочек» (шкал, формирователей, делителей, DSP, от введённых в трансивер при совместном использовании с компьютером шумовых составляющих).
Таким образом, для защиты эфира от «подготовительных» вспомогательных сигналов необходимо иметь на выходе передающей аппаратуры не только ФНЧ, но и ФВЧ с общей полосой прозрачности, в идеале равной полосе излучаемого сигнала: для SSB — 2,4 кГц, для CW — для AM — 6 кГц, для ЧМ – 10…15 кГц. Поскольку такие полосы пропускания на выходе передающих устройств обеспечить на практике не представляется возможным (да ещё с учётом перестройки такой полосы по диапазонам), следует на выходе, например, трансивера установить полосовой фильтр, который обеспечит не только подавление вредных составляющих сигнала, но и согласование выхода передатчика трансивера с антенной или со входом усилителя мощности. При этом основной сигнал будет очищен и от гармоник, и от шумовых составляющих, более низкочастотных чем полезный выходной сигнал. Поскольку полосовой фильтр обладает, в зависимости от добротности реактивных элементов его составляющих, определенной полосой пропускания, то либо во всем поддиапазоне частот, либо в требуемой его части настройку фильтра и согласование можно не изменять.
Полосовой фильтр можно изготовить как по схеме с индуктивной связью, что более желательно, так и по схеме с автотрансформаторной связью.
На рис. 1 приведена схема фильтра с индуктивной связью для использования на УКВ, на рис. 2 — с автотрансформаторной связью для применения на УКВ. На УКВ для улучшения параметров фильтра следует вместо катушек применять резонаторы (на более низких частотах — спиральные, на более высоких — коаксиальные). По аналогии с УКВ, на KB можно применять как спиральные резонаторы, так и обычные катушки.
На рис. 3 приведена схема полосового фильтра с катушками связи, на рис. 4 — с автотрансформаторной связью. Фильтры с катушками связи позволяют обеспечить согласование без вскрытия резонаторов, а фильтры с автотрансформаторной связью при согласовании требуют перемещения отводов для входа и выхода по виткам катушки L1 (рис. 4), или по центральному проводнику коаксиального резонатора (рис. 2). Настройку фильтра и согласование по входу и выходу можно производить простым методом с помощью ГСС и ВЧ вольтметра, но нагляднее всего провести ее с помощью измерителя частотных характеристик (например, Х1-48). Полосовой фильтр — симметричное устройство, поэтому вход и выход можно менять местами.
Конденсатор С1 предназначен для настройки полуволнового резонатора (в идеале) на рабочую частоту, излучаемую передатчиком, в реальности — на среднюю частоту полосы пропускания фильтра, ширина которой зависит от соотношения L1/C1 и степени нагрузки этого контура через индуктивную (с помощью последовательных контуров L2-C2 и L3-C3 — рис. 1 и 3) или автотрансформаторную связь с ним, через отводы от L1 (рис. 2 и 4). На экране ЭЛТ Х1-48 видна характеристика ПФ, влияние на неё подстроечников (С1 — СЗ) и нагрузки. Резонатор, конечно же, имеет большую физическую длину, но нет худа без добра — это обстоятельство позволяет отнести УМ от трансивера, что снижает напряжённость электромагнитного поля в месте нахождения оператора, у трансивера. Благодаря этому улучшается экологическая обстановка на рабочем месте и повышается устойчивость всей радиопередающей системы к наводкам, самовозбуждению и т.д.
Применение подобных фильтров на входе и выходе усилителя мощности позволит излучать в эфир узкий спектр, снизить вероятность появления TVI и BCI, а также более эффективно использовать ресурсы усилителя мощности. В самом деле, если подать сигнал с трансивера, особенно не имеющего на выходе тюнера, то выходная мощность подключенного к нему усилителя будет больше без полосового фильтра даже в том случае, если мы учтем затухание в фильтре и добавим мощности раскачки с трансивера для компенсации затухания. Это происходит потому, что часть выходной мощности приходится на «посторонние» составляющие спектра передатчика, которые при отсутствии полосового фильтра беспрепятственно проходят на вход усилителя и усиливаются. Очистив спектр передатчика с помощью ПФ, освободившийся «резерв» можно использовать по назначению, т.е. для увеличения выходной мощности передатчика на рабочей частоте.
Если полосовой фильтр используется не только на входе усилителя мощности, но и на выходе (что весьма желательно), то следует обратить особое внимание на детали фильтра, точнее, их пригодность для применения в таком фильтре. Так, например, конденсатор переменной емкости С1, установленный в месте максимума напряжения на контуре, в зависимости от выходной мощности усилителя и добротности резонатора (катушки) должен иметь зазор между пластинами 3-10 мм. Очень важен надежный контакт с общим проводом у катушки L1, т.к. в этом месте контура имеет место максимум тока, поэтому диаметр провода катушки L1 должен быть достаточно большим.
Оптимальную настройку полосового фильтра можно зафиксировать по максимальному отклонению стрелки измерителя анодного тока лампового усилителя мощности, или индикатора тока антенны, или по максимальной яркости свечения неоновой лампочки, расположенной непосредственно у антенного выхода фильтра или усилителя мощности.
UA9LAQ
См. канал в Telegram